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Abstract
It is shown how some of the recent results of de Souza et al (2006 J. Phys.
A: Math. Gen. 39 10415) can be generalized to describe Hamiltonians whose
eigenvalues are given as k-generalized Fibonacci numbers. Here k is an arbitrary
integer and the cases considered by de Souza et al correspond to k = 2.

PACS numbers: 03.65.Fd, 02.10.De

1. Introduction

Curado and Rego-Monteiro introduced in [2] a new algebraic structure generalizing the
Heisenberg algebra and containing also the q-deformed oscillator as a particular case. This
algebra, called generalized Heisenberg algebra, depends on an analytical function f and the
eigenvalues αn of the Hamiltonian are given by the one-step recurrence αn+1 = f (αn). This
structure has been used in different physical situations; see the references given in the recent
paper [1]. In the same paper [1] de Souza et al introduced an extended two-step Heisenberg
algebra having many interesting properties. In particular, they showed that in certain special
cases the eigenvalues of the involved Hamiltonian are given by the well-known Fibonacci
numbers, i.e., satisfy a two-step recurrence. It is the aim of the present paper to show how one
may introduce for arbitrary natural numbers k an extended k-step Heisenberg algebra which
reduces for k = 2 to the one discussed in [1] (and for k = 1 to the one in [2]). In particular,
the eigenvalues of the involved Hamiltonian are given in special cases by the k-generalized
Fibonacci numbers [3]. For the convenience of the reader we now recall the structure of the
extended two-step Heisenberg algebra, using the notations of [1]. It is generated by the set of
operators {H, a†, a, J3}, where H = H † is the Hamiltonian, a and a†—with a = (a†)†—are
the usual step operators and J3 = J

†
3 is an additional operator. These operators satisfy the

following relations:

Ha† = a†(f (H) + J3), and aH = (f (H) + J3)a, (1)
J3a

† = a†g(H), and aJ3 = g(H)a, (2)
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[a, a†] = f (H) − H + J3, (3)
[H, J3] = 0. (4)

The functions f and g are assumed to be analytical (in fact, the case discussed most thoroughly
is the one where these functions are linear). In the Fock space representation one has the
normalized vacuum state |0〉 defined by the relations

a|0〉 = 0, H |0〉 = α0|0〉, J3|0〉 = β0|0〉,
where α0 and β0 are real numbers. By some algebra one can show the following consequences,

a†|n〉 = Nn|n + 1〉, a|n〉 = Nn−1|n − 1〉, H |n〉 = αn|n〉, J3|n〉 = βn|n〉,
(the first equation is the definition of the constants Nn) where the following relations hold true:

αn+1 = f (αn) + βn, (5)

βn+1 = g(αn), (6)

N2
n+1 = N2

n + f (αn+1) − αn+1 + βn+1. (7)

Combining (5) and (6) shows the two-step dependence of the eigenvalues of the Hamiltonian
(i.e., the energy-levels): αn+1 = f (αn) + g(αn−1). In particular, choosing linear functions
f (x) = rx and g(x) = sx (with r, s ∈ R\{0}) yields the recursion relation αn+1 = rαn+sαn−1,
showing that the energy-levels comprise a generalized Fibonacci sequence (which reduces in
the special case r = 1 = s to the usual Fibonacci sequence), thus providing a connection to
Fibonacci-oscillators [4]. We may write the recursion relation of the linear case as follows:(

αn+1

βn+1

)
=

(
r 1
s 0

) (
αn

βn

)
. (8)

Using βn+1 = sαn, we can write this also in terms of the {αn}n∈N only (and where we switch
the order of the vector components):(

αn

αn+1

)
=

(
0 1
s r

) (
αn−1

αn

)
≡ T2(r, s)

(
αn−1

αn

)
= T2(r, s)

n

(
α−1

α0

)
(9)

where we have used the convention α−1 ≡ β0

s
. In [1] equation (8) is studied from a stability

analysis and the fixed points are studied. For this the eigenvalues λ±(r, s) = r±
√

r2+4s
2 of

T2(r, s) are determined. However, it is also possible to use these to give an explicit expression
for the αn due to (9). The result can also be derived by Binet’s formula. Note that the case
r = 1 = s of the classical Fibonacci numbers (where α0 = 1 and α−1 ≡ β0 = 0) gives
rise to λ±(1, 1) = 1±√

5
2 , where λ+(1, 1) = 1+

√
5

2 is the golden ratio describing the limit
limn→∞ αn+1

αn
of two consecutive elements of the sequence. One also has a relation between

(8) and (generalized) Fibonacci chains via substitution rules [1]. In the case r = 1 = s one
associates with (8) the substitution rule A → AB and B → A, thus yielding the Fibonacci
chain A → AB → ABA → ABAAB → · · · whose length grows according to the Fibonacci
numbers 1, 2, 3, 5, . . . . In the case of arbitrary natural numbers r and s one has r + 1 different
possible substitution rules, namely A → A · · · ABA · · · A (A appears r times and B appears
at the ith place with 1 � i � r + 1) and B → A · · · A (s times).

In this paper we show how some results of de Souza et al [1]—corresponding to the case
k = 2—can be generalized to arbitrary natural numbers k � 3 where the integer k denotes the
order of the recursion relation which the eigenvalues of the Hamiltonian satisfy. As recalled
above, the case k = 2 is associated with the well-known Fibonacci numbers which have
appeared in numerous physical applications, many of them in the context of quasicrystals
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(through substitution rules—see, e.g., [5, 6] and the references therein as first steps into the
vast literature). The case of larger k is associated with the k-generalized Fibonacci numbers
introduced by Miles [3] and discussed from many different points of view (see, e.g., [7–18]).
Up to now these numbers have appeared only in few physical applications (in particular, in
connection with generalized exclusion statistics [19, 20] or the statistics of certain lattice
animals which is closely connected to percolation problems [21, 22]), although they also give
rise to interesting substitution rules, as will be discussed later on. For the convenience of the
reader we have treated the case k = 3 separately from the general case, although this has led
to some repetitions.

2. The case k = 3

In this section we want to extend the structure discussed in the last section to an extended
three-step Heisenberg algebra, i.e., to the case k = 3. We will accomplish this by introducing
a further operator J4 with J

†
4 = J4 and a further analytical function h. The main idea is that the

nth eigenvalue of this new operator is connected to the (n−2)th eigenvalue of H (generalizing
(6)) and that the (n + 1)th eigenvalue of H—i.e., αn+1—is given by f (αn) and the sum of the
nth eigenvalues of J3 and J4 (generalizing (5)). Let us recall that (6) follows from (2) due to

βn|n〉 = J3|n〉 = 1

Nn−1
J3a

†|n − 1〉 (2)= 1

Nn−1
a†g(H)|n − 1〉 = g(αn−1)|n〉.

Thus, to obtain a connection between the nth eigenvalue of J4 and the (n − 2)th eigenvalue of
H, we will have to consider what happens when (a†)2 is interchanged with J4. This motivates
(12). Similarly, to obtain the generalization of (5) we first recall that (5) depends on (1) as
follows:

αn+1|n + 1〉 = 1

Nn

Ha†|n〉 (2)= 1

Nn

a†(f (H) + J3)|n〉 = (f (αn) + βn)|n〉.

Thus, to realize the second part of the idea we have to generalize (5) by replacing on the
right-hand side J3 by J3 + J4. This motivates (10). Of course, it is then necessary to close
the algebra in a consistent fashion. After these motivations we now introduce the extended
three-step Heisenberg algebra through the set of operators {H, a†, a, J3, J4} satisfying the
commutation relations (10)–(15):

Ha† = a†(f (H) + J3 + J4), (10)

J3a
† = a†g(H), (11)

J4(a
†)2 = (a†)2h(H), (12)

[a, a†] = f (H) − H + J3 + J4, (13)

[H, J3] = 0, [H, J4] = 0, (14)

[J3, J4] = 0. (15)

(Here we have omitted the adjoint equations in (10)–(12).) In the Fock space representation
one has the normalized vacuum state |0〉 defined by the relations

a|0〉 = 0, H |0〉 = α0|0〉, J3|0〉 = β0|0〉, J4|0〉 = γ0|0〉,
where α0, β0 and γ0 are real numbers. The first normalization constant is shown to be
N2

0 = f (α0) − α0 + β0 + γ0 (using (13)). By some algebra one can show the following
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consequences:

a†|n〉 = Nn|n + 1〉, a|n〉 = Nn−1|n − 1〉,
H |n〉 = αn|n〉, J3|n〉 = βn|n〉, J4|n〉 = γn|n〉.

It is now possible to show the following relations generalizing (5) and (6):

αn+1 = f (αn) + βn + γn, (16)

βn+1 = g(αn), (17)

γn+1 = h(αn−1), (18)

N2
n+1 = N2

n + f (αn+1) − αn+1 + βn+1 + γn+1. (19)

The new relation (18) is crucial for the following. The proof of it is analogous to (17):

γn|n〉 = J4|n〉 = 1

Nn−1Nn−2
J4(a

†)2|n − 2〉 (12)= 1

Nn−1Nn−2
(a†)2h(H)|n − 2〉

= 1

Nn−1

1

Nn−2
(a†)2h(αn−2)|n − 2〉 = h(αn−2)|n〉.

Thus, γn = h(αn−2). Taking (16)–(18) together, we obtain the following relation

αn+1 = f (αn) + g(αn−1) + h(αn−2), (20)

showing that the eigenvalues αn of the Hamiltonian satisfy a three-step recurrence. Choosing
linear functions f (x) = rx, g(x) = sx and h(x) = tx (with r, s, t ∈ R\{0}) yields the
recursion relation

αn+1 = rαn + sαn−1 + tαn−2, (21)

showing that the energy-levels comprise a generalized Tribonacci sequence (and in the special
case r = s = t = 1 this reduces to the usual Tribonacci sequence). In analogy with the case
k = 2 considered above, we can write the relations (16)–(18) in the linear case as follows:

αn+1

βn+1

γn+1


 =


r 1 1

s 0 0
0 t

s
0





αn

βn

γn


 . (22)

Note that we have used here γn+1 = tαn−1 together with βn = sαn−1 to express γn+1 through
βn. As in the case k = 2, we can bring this into a form where only the {αn}n∈N are involved
(again, the order of the vector components is switched):

αn−1

αn

αn+1


 =


0 1 0

0 0 1
t s r





αn−2

αn−1

αn


 ≡ T3(r, s, t)


αn−2

αn−1

αn


 . (23)

Introducing for notational convenience the vectors �α(n+1)
3 := (αn−1αnαn+1)

t and using the
conventions α−1 ≡ β0

s
and α−2 ≡ γ0

t
, we can iterate (23) and obtain

�α(n+1)
3 = T3(r, s, t)

n�α(0)
3 . (24)

It is the clear that the eigenvalues λ1(r, s, t), λ2(r, s, t), λ3(r, s, t) of T3(r, s, t) will play an
important role for the ‘dynamics’ of the system (i.e., the solutions of (21))—as in the case k = 2
considered above; here we have assumed that the parameters r, s, t are chosen appropriately
such that three eigenvalues exist. One also has a generalized Binet’s formula (see, e.g.,
[3, 11, 16, 18]) which allows one to express the general solution αn through the eigenvalues
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λi(r, s, t) and the initial values α0, β0, γ0. However, note that a physical requirement will be
that all energy-levels are greater than zero, i.e., En ≡ αn � 0. This restricts the set of possible
functions f, g, h, and, in the particular case of linear functions it restricts the coefficients
r, s, t . For example, if r, s, t � 0 then the energy-levels build a nondecreasing sequence, i.e.,
En+1 � En. This seems to be a very natural condition (otherwise the counting seems to be
very strange).

We can generalize the connection between (8) and (generalized) Fibonacci chains via
substitution rules described at the end of the first section as follows. Starting from (22), we
introduce the alphabet {A,B,C} and assume—in analogy with the case k = 2—that r, s, t

are natural numbers; in addition, we furthermore assume that t
s

is a natural number, i.e., t is a
multiple of s. Then there exist several substitution rules associated with (22):

A → Al1A1A
l2A2A

l3 , B → As, C → B
t
s , (25)

where (A1, A2) is a permutation of (B,C), 0 � li � r for 1 � i � 3 and l1 + l2 + l3 = r (here
we have denoted the concatenation of p letters A by Ap = A · · · A (p times)). The number
of substitution rules is given by (r + 1)(r + 2), which is the number of different words of
length r + 2 in the letters {A,B,C} where the letter A appears exactly r times. As an example,
let r = 2, s = 1, t = 2. A possible substitution rule is then given by A → ABAC,B →
A,C → BB. This generates the following generalized Fibonacci chain: A → ABAC →
ABACAABACBB → ABACAABACBBABACABACAABACBBAA → . . . . It is
evident that the lengths grow very rapidly (1, 4, 11, 29, . . .).

3. The generalization to arbitrary k � 2

In this section we will generalize the situation of the preceding sections to the case of arbitrary
k � 2. To obtain a transparent formulation we will change the notation to a more convenient
one. In addition to the Hamiltonian H and the step operators a and a†, we have the operators
Ji with J

†
i = Ji for i = 2, . . . , k and associated analytic functions fi for 1 � i � k. It is

clear from the explicit discussion of the case k = 3 that the main step consists in introducing
new commutation relations for Ji and (a†)i−1. Thus, the set of operators of the extended k-
step Heisenberg algebra consists of {H, a†, a, J2, J3, . . . , Jk} and the commutation relations
satisfied by these operators are given by (26)–(30):

Ha† = a†

(
f1(H) +

k∑
i=2

Ji

)
, (26)

Ji(a
†)i−1 = (a†)i−1fi(H) for 2 � i � k, (27)

[a, a†] = f1(H) − H +
k∑

i=2

Ji, (28)

[H, Ji] = 0 for 2 � i � k, (29)

[Ji, Jj ] = 0 for 2 � i < j � k. (30)

(Here the adjoint equations in (26) and (27) have been omitted.) Clearly, choosing k = 3
reproduces the situation considered in the last section (if one also makes the replacement
(J2, J3, f1, f2, f3) � (J3, J4, f, g, h)). In the Fock space representation one has the
normalized vacuum state |0〉 defined by the relations

a|0〉 = 0, H |0〉 = α
(1)
0 |0〉, Ji |0〉 = α

(i)
0 |0〉 for 2 � i � k,
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where α
(i)
0 for 1 � i � k are real numbers. It follows that

a†|n〉 = Nn|n + 1〉, a|n〉 = Nn−1|n − 1〉,
H |n〉 = α(1)

n |n〉, Ji |n〉 = α(i)
n |n〉 for 2 � i � k.

The algebraic relations imply

α
(1)
n+1 = f1

(
α(1)

n

)
+

k∑
i=2

α(i)
n , (31)

α
(i)
n+1 = fi

(
α

(1)
n−i+2

)
for 2 � i � k, (32)

N2
n+1 = N2

n + f1
(
α

(1)
n+1

) − α
(1)
n+1 +

k∑
i=2

α
(i)
n+1. (33)

As in the case k = 3, relations (32) are crucial for the following and they are shown in the
same way as (18) by application of (27):

α(i)
n |n〉 = Ji(a

†)i−1

κ(n, i)
|n − i + 1〉 (27)= (a†)i−1fi(H)

κ(n, i)
|n − i + 1〉 = fi

(
α

(1)
n−i+1

)|n〉.

(Here we have denoted by κ(n, i) = Nn−1Nn−2 · · · Nn−i+1 the product of the constants
appearing in the intermediate steps of the calculation.) Taking together (31) and (32) yields
the relation

α
(1)
n+1 = f1

(
α(1)

n

)
+

k∑
i=2

fi

(
α

(1)
n−i+1

)
. (34)

Let us now assume that the functions are linear, i.e., fi(x) = λix for 1 � i � k (with
λi ∈ R\{0}). Then (34) reduces to

α
(1)
n+1 = λ1α

(1)
n + λ2α

(1)
n−1 + · · · + λkα

(1)
n−k+1, (35)

i.e., to the recursion relation of the k-generalized Fibonacci numbers [3, 11]. In analogy
with the cases k = 2, 3 considered above, we can write relations (31) and (32) in the
linear case as matrix equation. For this we first observe that one has for 2 � i � k that
α

(i)
n+1 = λiα

(1)
n−i+2. Since on the right-hand side only expressions with index n should appear, we

have to reexpress α
(1)
n−i+2. However, one finds that α(i−1)

n = λi−1α
(1)
n−i+2, implying the sought-for

relation α
(i)
n+1 = λi

λi−1
α(i−1)

n . To bring the recursion (35) into the desired form we have to notice

that α(m)
n = λmα

(1)
n−m+1 so that this equation can be written as α

(1)
n+1 = λ1α

(1)
n + α(2)

n + · · · + α(k)
n .

The resulting equation is


α
(1)
n+1

α
(2)
n+1

α
(3)
n+1

α
(4)
n+1
...

α
(k)
n+1




=




λ1 1 1 1 · · · 1
λ2 0 0 0 · · · 0
0 λ3

λ2
0 0 · · · 0

0 0 λ4
λ3

0 · · · 0
...

. . .
. . .

. . .
. . .

...

0 0 0 0 λk

λk−1
0







α(1)
n

α(2)
n

α(3)
n

α(4)
n

...

α(k)
n




. (36)
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As in the cases k = 2 and k = 3, we can bring this into a form where only the
{
α(1)

n

}
n∈N are

involved: 


α
(1)
n−k+2

α
(1)
n−k+3
...

α
(1)
n−1

α(1)
n

α
(1)
n+1




=




0 1 0 · · · · · · 0

0 0 1
. . .

...

...
...

. . .
. . .

. . .
...

0 0 · · · 0 1 0
0 0 · · · 0 0 1
λk λk−1 · · · λ3 λ2 λ1







α
(1)
n−k+1

α
(1)
n−k+2
...

α
(1)
n−2

α
(1)
n−1

α(1)
n




. (37)

Let us denote the matrix involved by Tk(λ); here we abbreviate the coefficients λi as a
vector λ = (λ1, . . . , λk). Introducing for notational convenience the vectors �α(n+1)

k :=(
α

(1)
n−k+2 · · · α(1)

n α
(1)
n+1

)t
and using the convention α

(1)
−m = α

(m+1)
0
λm+1

, we can iterate (37) and obtain
the generalization of (24):

�α(n+1)
k = Tk(λ)n�α(0)

k . (38)

It is the clear that the eigenvalues of Tk(λ) will play an important role for the ‘dynamics’ of the
system; however, the physical requirement of positive energies En ≡ α(1)

n � 0 will restrict the
set of possible coefficients λi as in the case k = 3 discussed above. One also has a generalized
Binet’s formula (see, e.g., [3, 11, 16, 18]) which allows one to express the general solution
α(1)

n through the eigenvalues of Tk(λ) and the initial values α
(i)
0 . Let us mention that the matrix

Tk(λ) is called in the mathematical literature (in particular in the case where all λi = 1) the
k-generalized Fibonacci-matrix Qk [14, 16–18]. If the coefficients λi satisfy λi � 0 and
λ1 + · · · + λk = 1 then Tk(λ) is a stochastic matrix and the recursion relation (38) describes
a Markov chain [14, 17]. If we denote the k-generalized Fibonacci numbers introduced by
Miles [3] by F (k)

n , then one has, in the case where all λi = 1 and where the initial values are
given by α

(1)
0 = 1 as well as α

(i)
0 = 0 for 2 � i � k, the following relation

En ≡ α(1)
n = F

(k)
n+k−1 =

∑
0�a1,...,ak�n+k−1
a1+2a2+···+kak=n

(a1 + · · · + ak)!

a1! · · · ak!
. (39)

Here we have used the explicit expression for the k-generalized Fibonacci numbers given
by [3]

F (k)
m =

∑
0�a1,...,ak�m

a1+2a2+···+kak=m−k+1

(a1 + · · · + ak)!

a1! · · · ak!
.

The case with arbitrary λi as well as arbitrary initial values can be treated in a similar form
using [11].

Clearly, it is again possible to associate substitution rules with (36) by introducing an
alphabet {A1, A2, . . . , Ak}. For this we have to assume that all λi with 1 � i � k as well
as all quotients qi := λi

λi−1
with 1 � i � k − 1 are natural numbers. Note that this implies

λ3 = q3λ2, λ4 = q4λ3 = q4q3λ2 and in general λm = qmqm−1 · · · q3λ2. The appropriate
substitution rules generalizing (25) are

A1 → A
l1
1 Ai1A

l2
1 Ai2 · · · Aik−1A

lk
1 , A2 → A

λ2
1 , Ai → A

qi

i−1 for 3 � i � k

(40)

where (i1, i2, . . . , ik−1) is a permutation of (2, 3, . . . , k), 0 � li � λ1 for 1 � i � k and
l1 +l2 +· · ·+lk = λ1. The number of substitution rules is given by (λ1 +1)(λ1 +2) · · · (λ1 +k−1)

which is the number of different words of length λ1 + k − 1 in the letters {A1, . . . , Ak}, where
the letter A1 appears exactly λ1 times.
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4. Conclusions

In this paper we have shown how some results of de Souza et al [1] can be generalized from
the case k = 2 to arbitrary natural numbers k � 3 where the integer k denotes the order of
the recursion relation which the eigenvalues of the Hamiltonian satisfy. The case k = 2 is
associated with the well-known Fibonacci numbers which have appeared in numerous physical
applications, many of them in the context of quasicrystals via substitution rules. The case of
larger k is associated with the k-generalized Fibonacci numbers introduced by Miles. It was
pointed out that the case k � 3 also gives rise to interesting substitution rules which might be
interesting for the study of quasicrystals.
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